If it's not what You are looking for type in the equation solver your own equation and let us solve it.
780^2=2(x^2)
We move all terms to the left:
780^2-(2(x^2))=0
determiningTheFunctionDomain -2x^2+780^2=0
We add all the numbers together, and all the variables
-2x^2+608400=0
a = -2; b = 0; c = +608400;
Δ = b2-4ac
Δ = 02-4·(-2)·608400
Δ = 4867200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4867200}=\sqrt{2433600*2}=\sqrt{2433600}*\sqrt{2}=1560\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1560\sqrt{2}}{2*-2}=\frac{0-1560\sqrt{2}}{-4} =-\frac{1560\sqrt{2}}{-4} =-\frac{390\sqrt{2}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1560\sqrt{2}}{2*-2}=\frac{0+1560\sqrt{2}}{-4} =\frac{1560\sqrt{2}}{-4} =\frac{390\sqrt{2}}{-1} $
| 10=d/2+6 | | x2+11x=30 | | 5x+8-3x=9+1 | | u/4+9=11 | | 2u-9=6u-1 | | 3x+(2x-3)+x=183 | | 3m-(m-4)=4 | | 780^2=x^2+x^2 | | 70=30-5(x-3) | | 2x-5x+46=2x+36 | | 15+10x=38+21x+9 | | 2z-2(2z+18)+16=5(2+10) | | 6x2+2x=0 | | 2z-4z-20=5(z+10) | | 28+x=72 | | 4x-9x+2=x-3+5 | | (X+8/8)=(9/4)+(x-8/3) | | 39=3f | | Y=800+0.05(x) | | –2–3q=-2 | | –2–3q =-2 | | -1.3+5.2p=-11.252-1.9p | | –2–3q = -2 | | 5x+20-3=10x-30 | | 5x-8x+9=6x-18 | | (x/2)+7=30 | | 3/10x+7=1/6=x | | |y-27|-|y-19|=0 | | 5x-8+3=4x+31 | | 7x+8x-6x=26+1 | | -2x+x-5=3x-13 | | 52=34-2(x-4) |